《圆面积》教学设计
作为一位优秀的人民教师,时常需要编写教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。教学设计要怎么写呢?以下是小编收集整理的《圆面积》教学设计,仅供参考,大家一起来看看吧。
《圆面积》教学设计1【教学内容】:教材67--68页圆的面积
【教学目标】:
1、理解和掌握圆面积的计算公式,培养学生观察、操作、分析、概括的能力及逻辑推理能力。
2、利用已有知识,运用数学思想,推导出圆的面积计算公式,渗透转化,极限、以直代曲等数学思想。
3、培养认真观察,深入思考的良好品质,锻炼自己面对困难,勇于克服,锲而不舍的精神。
【教学重点】:圆面积的计算
【教学难点】:圆面积公式的推导
【教、学具准备】1.多媒体课件;
2.把圆8等分、16等分和32等分的硬纸板若干个;
3.剪刀若干把
【教学过程】
一、复习旧知,导入新课
师:同学们,你们想一想,我们学习的平行四边形、三角形、梯形的面积的时候,是利用什么方法推导出了它们的面积公式呢?
预设引导学生明确:我们是用转化的方法推导出了面积计算公式。
师:对了,在研究这些平面图形的面积时,我们利用了转化,对应的数学方法解决了问题,那么我们能不能利用这些数学思想求圆的面积呢?
(板书:圆的面积)
【设计意图】:通过复习已学图形面积公式的推导,勾起对已有知识的回忆,为新知打下基础。
二、尝试转化,汇报发现
1、师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?
(1)学生通过预习,小组内讨论你发现了什么?
(2)小组派代表发言
(发现:通过转化,可以成为其他图形.并说说你们是怎么做的?)
(学生通过分的份数不同,发现分的份数越多,拼出来的越接近长方形。
【设计意图】:学生通过小组合作讨论,发现问题,激发学生学习兴趣,培养自主学习能力,也为高效课堂奠定基础。
2、小组合作,尝试推导公式
现在请同学们思考一个问题:你们把一个圆形转化成了现在的图形之后,它们的面积有没有改变?
(1)请小组内讨论。
学生发现这个近似的长方形的面积=圆的面积。
师:虽然我们现在拼成的是一个近似的长方形,但是如果把圆等分成32份、64份、128份、256份……一直这样下去分成很多很多份,拼成的图形就变为真正的长方形
(2)尝试推导公式。
师:现在我们就来看这个长方形。同学们,如果圆的半径为r,你们知道这个长方形的长和宽分别是多少吗?现在请小组为单位进行讨论讨论。
师:好,同学们,谁能首先告诉老师,这个长方形的宽是多少?
预设:根据学生的回答,教师演示课件,同时闪烁圆的半径和长方形的宽,并标示字母r
师:那这个长方形的长是多少呢?(教师边演示课件边说明)这个长方形是由两个半圆展开后拼成的,请大家看屏幕,这个红色的半圆展开后,其中这条黄色的线段就是长方形的长。
请同学们仔细观察(课件继续演示如图,半圆展开后再还原,再展开,),这个长方形的长究竟与圆的什么有关?究竟是多少呢?
预设:教师引导学生明白:这个长方形的长与圆的周长有关,并且是圆的周长的一半(如果学生有困难的话,教师利用课件演示)。并且让学生通过计算得出长方形的长就是。
师:现在我们已经知道了这个长方形的长和宽,它的面积应该是多少?那圆的面积呢?
小组内讨论发现:长方形的面积=长×宽圆的面积=周长的一半×半径
【设计意图】:通过学生课上分组讨论与交流,调动学生多种感官参与学习,发挥学生的主体作用和互助合作的精神,使他们在交流合作中获得经验。
三、运用公式,解决问题
1.教学例
1.师:同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?(出示例1)如果我们知道一个圆形花坛的直径是20m,我们该怎样求它的面积呢?请大家动笔算一算这个圆形花坛的面积吧!
(1)找两个学生到前面版演
教师加强巡视,发现问题及时指导,并提醒学生注意公式、单位使用是否正确。
2.加强练习教师出示课件题目,看谁做得又对又快。
3.数学小诊所师:课件出示题目,学生抢答
【设计意图】:以做练习的形式,检验学生对这节课的学习效果,有利于了解学生的学习情况,便于教师及时调整教学。四、对本课内容进行回顾,今天你都学到了什么?引导学生回顾今天所学知识点。
《圆面积》教学设计2一、创设情境,引出问题
教师活动
学生活动及达成目标
复习,平行四边形、三角形、梯形面积计算公式推导过程,引发学生思考:能否用转化法求圆的面积呢?
指名学生回忆平行四边形、三角形、梯形面积计算公式的推导。学生汇报时,教师引导其他学生注意倾听并对发言的学生进行补充。
达成目标:以旧引新,激趣质疑,引起学生的学习兴趣。
二、共同探索,总结方法
教师活动
学生活动及达成目标
(一)教师引导学生,在研究多边形面积时,利用割补、拼组等方法,将多边形转化成已学的图形来求面积。在此基础上提出:“是否也可以把圆分割成若干等分后转化为已学过的图形呢?”试试看吧!
(二)引导学生进一步思索:拼成的长方形与圆有什么联系?
(三)在学生动手操作16等份的拼法之后,电脑演示32等份、64等份、128等份所拼的图形,让学生体验分成的份数越多,拼成的图形就越接近长方形。
(四)放手让学生自主探究,根据长方形和圆的关系,从而推导圆的面积公式。
1、学生拿出已准备好的圆,自主探索,试着剪拼。学生通过观察,发现拼出的是近似的长方形。
达成目标:自然渗透转化的思想。
2、小组讨论。
学生汇报讨论结果:从图中可以看出:长方形的长近似于(圆周长的一半),宽近似于(半径)。
3、明确方法,体验极限
(1)学生动手操作16等份的拼法;
(2)比较每一次所拼图形的变化;
小结:图形的面积没有改变,圆的面积=拼成的近似长方形的面积。
达成目标:体会“无限逼近”的极限思想。
4、推导圆的面积公式
根据长方形长和宽与圆的周长和半径的关系推导出圆的面积公式
长方形的面积=长×宽
圆的面积=周长的一半×半径
……此处隐藏3120个字……数学上册20页例2、例3。
教学目标:
1、知识与能力:使学生正确认识圆的面积的含义;理解掌握圆面积的计算公式,并能正确地计算圆的面积。
2、过程与方法:激发学生参与整个课堂教学活动的兴趣,让学生在“提出问题——分析问题——解决问题——应用问题”的研究性学习的模式中推导出圆面积公式。
3、情感、价值观:渗透转化的数学思想和极限思想,同时对学生进行辩证唯物主义思想的初步教育。
教学重点:圆面积计算公式的推导。
教学难点:极限思想的渗透及圆面积公式的推导。
教具学具:剪刀4把,圆纸片,大小不一的两个圆。
教学过程:
一、认识圆面积的内涵——提出问题
你认识圆吗?你已经知道了圆的那些知识?回顾以前学的平面图形,你还想知道圆的什么知识?
圆的面积怎样求呢?请你拿出准备的圆纸片,摸一摸,体验一下圆面。你能比划圆的面积吗?你能说出圆的面积指的是什么吗?
学生说后,老师小结指出:圆的面积,就是圆所围成的平面图形的大小。今天这一课,我们就来研究怎样求圆的面积。揭示课题:圆的面积
二、讨论操作——分析问题
1、积极动脑,讨论推法
师:下面,就请大家来想办法找出求圆的面积的科学方法——面积公式。
如学生想不出方法,就生回忆长方形、平行四边形、三角形的面积公式推导过程。如有学生想出就让学生举手谈设想。①、摆——长方形面积推导就是通过摆面积单位,然后推导出长方形的面积公式。②、剪、拼——平行四边形面积的推导就是先沿高剪开,然后再拼成已学过的长方形来推导出平行四边形的面积公式的。③、旋转、移拼——三角形、梯形面积的推导就是通过旋转,然后再移拼成已学的平行四边形来推导出面积公式的。
师指出:学习总是化未知为已知;求一个新的图形的面积时也是把新图形转化成已知图形来求面积。(板书:转化。)
2、分组操作,反思求悟
把学生分组,根据三种想法去操作,看能不能找出圆面积的求法。如果有困难,困难在那里?为什么求不出圆的面积?
学生汇报研究情况。(圆是曲线围成的,不可以直接用面积单位来摆;旋转也不行转来转去还是圆。)由此让生悟出:摆不行;旋转也不行;只有剪拼有点希望。
3、抓住契机,相机引导
师:摆不行,旋转也不行,只有通过剪,拼转化成已学的图形可以试一试了。
师:那么,能不能随意剪、随意拼呢?请大家比一比:
师出示大小不一的两个圆,哪个面积大?为什么?也就是说圆的面积与什么有关?引导得出:圆的面积与半径有关。
师:既然圆面积与半径有关,那么剪的时候就可以沿什么去剪呢?(半径)对,就应沿半径的方向去把圆剪开;并且,剪开后再拼成一个以半径为边的图形?
请大家再来试试剪和拼。
4、学生尝试,研究转化过程
学生在小组内进行,师巡视指导,若学生有困难,师可引导:首先,在剪的时候,不能随意剪,要沿半径剪,并且要等分。我们先从最少的情况来研究:把圆两等分再拼。(生操作)怎样?能不能拼成已经学过的图形?(不能。)那就在此基础上继续等分再拼——试试四等分。让学生认识到如果这样无限等分下去,再对插,最终将会把圆转化成平行四边形(三角形、梯形等)。
三、以转化成平行四边形为例,研究推导出圆面积公式——解决问题
1、设疑:很好,刚才的研究,同学们表现得很不错。根据尝试操作,我们把圆转化成了平行四边形,现在大家能够找到圆面积的计算方法吗?
2、学生小组或同桌合作探究,推导公式。
(1)、讨论探究,出示提示语:
平行四边形的长相当于圆的(),宽相当于圆的()?
让学生讨论之后动笔试一试,看能否推导出圆的面积公式。
(2)、指名学生上台演示公式推导过程
3、揭示公式,验证猜想。让学生齐读公式。
4、用字母表示公式。
提问:要求圆的面积只要知道什么就行?(半径)
四、在实践中巩固——应用问题
1、教学例3:修建一个半径是30米的圆形鱼池,它的占地面积是多少平方米?
学生自做,指名学生板演,老师巡视,了解学生完成作业情况,后集体订正。
2、完成教材21页“课堂活动”第1题。
学生自做,后同桌交流,交流时介绍一下思路及结果。
五、课堂总结,渗透学法——研究性学习
今天这一堂课,通过同学们自己的猜测、讨论、操作、思考,把圆转化成已经学的平行四边形来研究探讨得出了圆的面积公式,很不简单,希望同学们今后继续发扬这种对学习的研究精神,在研究中去学习数学。
六、巩固、拓展知识。
1、从自己身边找一个圆形物体,请你想办法求出它的面积。
2、把圆分成若干等份后,拼成近似的梯形或三角形,推算出圆面积计算公式。
七、板书略。
《圆面积》教学设计7教学内容
课本第143页例2;练一练第1~6题。
教材分析
这部分内容是学生在学会了求圆的周长与直径、半径的关系以及已知圆的半径求圆面积的基础上,来学习已知圆的周长。求圆面积的应用题。
学情分析
本班学生计算能力还可以,就是对应用题有一种害怕心理。
教学目标
1、进一步掌握圆面积公式,并能正确地计算圆面积。
2、能运用圆面积计算公式,正确地解决一些简单的实际问题。
教学重点
会熟练运用公式求圆面积。
教学难点
求出需要的条件,即圆的半径。
教学准备
作业纸、课件。
教学过程
一、复习。
课件出示:
(一)求下列各题中圆的半径。
(1)C=6.28分米,r=?;(2)d=30厘米,r=?
(3)C=15.7分米,r=?;(4)d=18.84厘米,r=?
(二)、求下列各圆的面积。
(1)r=2分米,S=?(2)d=6米,S=?
(3)r=10厘米,S=?(4)d=3分米,S=?
只要求学生进行口头表述计算公式(不求计算结果)
二、学生活动:
要求两人一小组,到室外找一个圆形物体的平面,计算出它的面积。
运用学生事先准备的工具(细绳、直尺等)
三、汇报交流
小组把作业纸上交,交流心得
姓名
准备工具
物体名称周长
半径
面积
四、巩固练习
练一练第1~6题。
《作业本》p73。
板书设计:
圆面积公式的应用
R=d÷2
R=c÷π÷2
S=πr